

Simons Observatory Lensing Pipeline

This documentation will walk you through the process of transforming
microwave sky maps into a measurement of the CMB lensing power spectrum
and cosmological parameters. Broadly, this is achieved by passing
a co-added map through a quadratic estimator, calculating its
power spectrum, debiasing it with simulations and MCMC sampling for the
cosmological parameters.

That sounds simple enough, but with methods
that ensure insensitivity to the simulations used and robustness against
instrumental and astrophysical systematics, the detailed procedure can
be quite complex and computationally intensive. Moreover, a large array of
consistency and null tests
need to be done to ensure (and iterate on) the quality of the data that
is used. This cookbook-style documentaion will guide you through the process.

Note that parts of this documentation strongly overlap with parts of
the component separation pipeline, since they share a lot of the pre-processing.
The overlapping parts are fully documented here.

Contents:

	1. Pipeline tasks
	1.1. Preparation

	1.2. Simulation

	1.3. Co-addition

	1.4. Filtering

	1.5. Quadratic Estimator

	1.6. Normalization

	1.7. Multiplicative verification

	1.8. Bias subtraction

	1.9. Covariance

	1.10. Exploration and validation

	1.11. Cosmological constraints

	2. Staging and parallelization
	2.1. Example run

	3. Testing
	3.1. Verification

	3.2. Null tests

	3.3. Bandpower consistency tests

Indices and tables

	Index

	Module Index

	Search Page

1. Pipeline tasks

1.1. Preparation

1.1.1. Data access

The ACT and SO map-makers provide sets of maps with mutually exclusive data;
each set consists of completely independent TOD samples. This constitutes some
splitting of the data. For historical reasons, we refer to each such set as
an `array’. This terminology is derived from the fact that the TODs are
primarily split by which detector array they originate from, though since 2015, ACTpol
and its successors (including Advanced ACT and SO) use multi-chroic arrays,
which means each hardware array will provide us multiple (almost always two) `array’ map sets even
in the same season/year and region. We will now stop using quotes around `array’
under the understanding that it applies to some unit of splitting closely
related to what is used in ACT.

Within ACT, these arrays typically come from some region or scan (though since 2016 there
has primarily been just a wide scan each for day and night) for a particular season
and particular frequency band (since the ACTpol PA3 array, one of two within a dichroic hardware array).
For SO, under the current simulation design, there will be two array maps for each optics tube because
of the dichroic hardware array in the tube.

We will also be combining with Planck, for which we define a Planck array as a particular
frequency band, reprojected to the CAR pixelization and subtracted of sources (see planck_reproj).

1.1.2. Planck reprojection

1.2. Simulation

1.3. Co-addition

1.4. Filtering

1.5. Quadratic Estimator

1.6. Normalization

1.7. Multiplicative verification

1.8. Bias subtraction

1.8.1. Mean-field map

1.8.2. Monte Carlo N1

1.8.3. Realization-dependent N0

1.8.4. Diagonal RDN0

1.8.5. MC bias

1.9. Covariance

1.10. Exploration and validation

1.11. Cosmological constraints

1.11.1. Mock external datasets

2. Staging and parallelization

2.1. Example run

As an example, let’s say that we want to perform the following null test on ACT data:
check that the debiased lensing power spectrum on a split null for
a specific individual array is consistent with zero.

This requires the following:

	A mask to define the geometry and region of the test

	Simulations of the

pydpiper config.yaml –stages make_mask
pydpiper config.yaml –stages noise_sim_model
pydpiper config.yaml –stages generate_noise_sims
pydpiper config.yaml –stages coadd_sims,rdn0,mcn1,mcmf
pydpiper config.yaml –stages coadd_data,qe,debiased_power

SCRIPTS that save to disk:
make_mask
noise_sim_model
generate_noise_sims
kspace_coadd
rdn0
mcn1
mcmf
qe_maps
qe_power
cov

3. Testing

3.1. Verification

Verification tests do not involve any real-world data. The main aim
is to make sure that the pipeline is unbiased. These runs involve
treating some subset of the simulations as the data, and then
averaging the results to residuals with respect to the input. In
practice, we expect to find percent level residuals that constiute
the MC bias. We provide the following:

	Baseline MC with 1d sims

	Baseline MC with tiled sims

	Baseline MC with time-domain sim

	Extragalactic foreground test

	Galactic foreground test

	Varied cosmology runs

The last run is crucial in re-inforcing our confidence in the percent
level MC bias, when percent level precision is called for in the data.
We expect the MC bias to primarily be dictated by things like the mask
which our simulations accurately capture. The varied cosmology run
looks for a cosmology dependence in the MC bias, which should be ideally
be negligible.

3.2. Null tests

We run a series of tests which should result in bandpowers we expect to
be consistent with zero. These come in two classes, curl tests and data
split tests. The latter involves taking two splittings of the data, differencing
them and running them through the lensing pipeline. In the absence of
systematics, we expect the CMB and foregrounds to cancel. If the debiasing
steps are working properly, the resulting bandpowers should be consistent
with zero. We provide:

	Curl tests

	90 GHz - 150 GHz null

	Individual array split differences

	Co-added split difference

	Day vs. night difference

	Difference from Planck nulls

3.3. Bandpower consistency tests

We run the lensing pipeline on various splittings of the data. We then
examine the difference of bandpowers, which should be consistent with null.
We provide the following:

	Individual array consistency

	Individual array consistency (tiled sims)

	Polarization combination consistency

	Isotropy tests

	Minimum multipole and maximum multipole variations

	Night-only

	Cross-only split-based estimator

	Aggressive dust masks

	353 GHz subtraction

	Samples from beam error

	Samples from calibration error

Index

solenspipe

[image: _images/3632b4c406cb113f12837ac12838c662aaebedd9.svg]
 [https://so-lenspipe.readthedocs.io/en/latest/?badge=latest:alt:DocumentationStatus]Pipeline libraries and scripts for L3.1

	Free software: BSD license

Dependencies

NERSC tip: you may need the python/3.7-anaconda-2019.07 module. You
can add module load python/3.7-anaconda-2019.07 to your
~/.bash_profile.ext. Also, when running quick tests on the login
node (e.g. to test imports after setting up), you should run
export DISABLE_MPI=true since MPI calls do not work on the cori
login node.

Here are all the pacakges you’ll need before you can run this library
and scripts therein:

	so-pysm-models [https://github.com/simonsobs/so_pysm_models/]
(python setup.py install --user) required by mapsims

	pysm [https://github.com/healpy/pysm/]
(pip install pysm3 --user) required by mapsims

	mapsims [https://github.com/simonsobs/mapsims/]
(git checkout car_fix ; python setup.py develop --user – we
recommend a symbolic install link since you may have to periodically
update this repo, change branches, etc. since it is actively under
development)

	pixell [https://github.com/simonsobs/pixell/] (if
running on NERSC, run
python setup.py build_ext -i --fcompiler=intelem --compiler=intelem
followed by adding the directory to your PYTHONPATH; else run
python setup.py install --user); test by running py.test -s

	falafel [https://github.com/simonsobs/falafel/]
(pip install -e . --user)

	symlens [https://github.com/simonsobs/symlens/]
(pip install -e . --user)

	quicklens [https://github.com/msyriac/quicklens/] (Python 3 fork of
Duncan Hanson’s code used to get normalization of lensing estimators. if
running on NERSC, run
python setup.py build_ext -i --fcompiler=intelem --compiler=intelem;
else run python setup.py build_ext -i , and then add to PYTHONPATH)

	camb [https://camb.readthedocs.io/en/latest/]
(pip install camb --user)

	orphics [https://github.com/msyriac/orphics/]
(pip install -e . --user)

	enlib [https://github.com/amaurea/enlib/] (just need enlib/bench.py
for benchmarking ; git clone the repo and add to PYTHONPATH)

	quaternionarray [https://pypi.org/project/quaternionarray/]:
(pip install quaternionarray --user) required by sotodlib

	sotodlib [https://github.com/simonsobs/sotodlib]
(git checkout aca85843b70b0c6ebac031aa48fff47f93ed6661 ; python setup.py install --user)

	sotoddb [https://github.com/simonsobs/sotoddb]
(python setup.py install --user)

	so_noise_models [https://github.com/simonsobs/so_noise_models]
(python setup.py install --user)

	Other miscellaneous packages:
healpy, Cython, astropy, numpy, scipy, matplotlib, pyyaml, h5py, Pillow
(Python Image Library)

Installing

To install, run:

python setup.py build_ext -i
pip install -e . --user

Then copy input/config_template.yml to input/config.yml and edit
it to match paths on your system (specifically, the data_path
variable in the .yml file will need to be changed to be for a directory
of your own).

Demo

Run python bin/simple.py -h and if the installation is succesfull,
you should see

usage: simple.py [-h] [-N NSIMS] [--sindex SINDEX] [--lmin LMIN] [--lmax LMAX]
 [--isotropic] [--no-atmosphere] [--use-cached-norm]
 [--wnoise WNOISE] [--beam BEAM] [--disable-noise]
 [--zero-sim] [--write-meanfield] [--read-meanfield]
 [--healpix] [--no-mask] [--debug] [--flat-sky-norm]
 label polcomb

Simple lensing reconstruction test.

positional arguments:
 label Version label.
 polcomb Polarizaiton combination: one of mv,TT,TE,EB,TB,EE.

optional arguments:
 -h, --help show this help message and exit
 -N NSIMS, --nsims NSIMS
 Number of sims.
 --sindex SINDEX Start index for sims.
 --lmin LMIN Minimum multipole.
 --lmax LMAX Minimum multipole.
 --isotropic Isotropic sims.
 --no-atmosphere Disable atmospheric noise.
 --use-cached-norm Use cached norm.
 --wnoise WNOISE Override white noise.
 --beam BEAM Override beam.
 --disable-noise Disable noise.
 --zero-sim Just make a sim of zeros. Useful for benchmarking.
 --write-meanfield Calculate and save mean-field map.
 --read-meanfield Read and subtract mean-field map.
 --healpix Use healpix instead of CAR.
 --no-mask No mask. Use with the isotropic flag.
 --debug Debug plots.
 --flat-sky-norm Use flat-sky norm.

For a test beyond the imports, you can run
python bin/simple.py test TT -N 1 but you’ll need some files in your
data_path directory to get going.

Note that if working on NERSC, you might have to run the scripts on an
interactive node.

Contributing

If you have write access to this repository, please:

	create a new branch

	push your changes to that branch

	merge or rebase to get in sync with master

	submit a pull request on github

If you do not have write access, create a fork of this repository and
proceed as described above.

 nav.xhtml

 Table of Contents

 		
 Simons Observatory Lensing Pipeline

 		
 Pipeline tasks

 		
 Preparation

 		
 Data access

 		
 Planck reprojection

 		
 Simulation

 		
 Co-addition

 		
 Filtering

 		
 Quadratic Estimator

 		
 Normalization

 		
 Multiplicative verification

 		
 Bias subtraction

 		
 Mean-field map

 		
 Monte Carlo N1

 		
 Realization-dependent N0

 		
 Diagonal RDN0

 		
 MC bias

 		
 Covariance

 		
 Exploration and validation

 		
 Cosmological constraints

 		
 Mock external datasets

 		
 Staging and parallelization

 		
 Example run

 		
 Testing

 		
 Verification

 		
 Null tests

 		
 Bandpower consistency tests

_static/minus.png

_static/plus.png

_static/file.png

